Invention of the Year Finalist: A Revolutionary, High Density, Nanopore Battery

Invention of the Year Finalist: A Revolutionary, High Density, Nanopore Battery

Bookmark and Share


University of Maryland researchers have capitalized on the huge technological potential of nanostructures through the creation of a new nanopore battery, which offers the potential to revolutionize energy storage.

This innovation, one of nine nominees for Invention of the Year, was developed jointly by Director of Maryland NanoCenter and Professor of Materials Science and Engineering Gary Rubloff in collaboration with Professor of Chemistry and Biochemistry Sang Bok Lee, as well as UMD Materials Science Graduate Research Assistants Chanyuan Liu and Xinyi Chen and Chemistry and Biochemistry Graduate Research Assistant Eleanor Gillette.

The device that the research team has developed is capable of high-energy capture and storage at high power and with long cycle life, and has massive arrays of precision nanostructures of identical dimensions, providing an optimal size.

“The ability to create precision nanostructures enables their design to be optimized for energy storage or capture, while minimizing the volume and weight associated with passive and peripheral materials such as binders and separators in the case of batteries and capacitors,” Rubloff said.

The battery gives high stability with charge/discharge cycling. Almost 90% of the battery’s initial capacity is retained after 1,000 cycles at rapid charge rates of between 2.4 and 12 minutes. Furthermore, the cell gives the battery a capacity retention of almost 50% at a rate of 0.4 minutes charge/discharge per cycle.

“The high power/energy performance of the storage devices can improve recharge rate, acceleration, and regenerative braking while reducing battery size,” Rubloff said.

A potential application of this battery is in smoothing out the supply of power generated from renewable energy sources like solar and wind that vary with time.    

“Energy storage systems following this invention can smooth out these power levels, reducing space, weight, and cost to implement smart grid systems,” he said.

The battery, Rubloff said, would find initial use in compact devices like sensors and actuators that need high burst power in response to signals.

“Portable sensors may employ batteries to sense motion, then use high power storage as in this invention to turn on other devices (e.g. video camera) and send wireless or cellphone data to central stations for follow-up by authorities,” he said.

Winners of this year’s Invention of the Year Awards will be announced April 29. For more information, visit research.umd.edu or techtransfer.umd.edu.

April 9, 2015


Prev   Next

Current Headlines

UMD Expands Innovation and Commercialization Team

University of Maryland, Governor Hogan Announce Grant to Support the Development of a New Maryland Crime Research and Innovation Center

UMD Division of Research Announces Summer 2018 Tier 1 Award Winners

UMD Researchers Awarded $1.5 Million NSF Grant to Bridge Gap between Microelectronics, Biological Systems

UMD Assistant Professor Awarded $1.1 Million to Mitigate Rising Sea-level and Saltwater Intrusion along Maryland Eastern Shore

Detection of Single 'Ghost Particle' Yields Solution of Decade-Old Cosmic Ray Mystery

Semiconductor Quantum Transistor Opens Door for Photon-Based Computing

To Nap or Not? UMD Researcher Studies Impact of Sleep on Memory in Pre-Schoolers

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts

Connect

social iconsFacebookTwitterLinkedInResearch News RSS Feed
Office of Technology Commercialization
2130 Mitchell Building
7999 Regents Dr.
University of Maryland
College Park, MD 20742

Phone: 301-405-3947  |  Fax: 301-314-9502
Email: umdtechtransfer@umd.edu

© Copyright 2013 University of Maryland

Did You Know

UMD's Neutral Buoyancy Research Facility, which simulates weightlessness, is one of only two such facilities in the U.S.